Presentation of Japanese Materials: Organic Electronics
Identifying promising candidate substances! Useful for selecting compounds that meet the conditions for device optimization.
This document introduces the applications of Schrodinger's 'Materials Science Suite' in organic electronics and organic EL. Through insights gained from computational results and theoretical interpretations, it is possible to identify promising candidate materials, enabling efficient development of organic light-emitting diodes (OLEDs) and organic semiconductors. Additionally, it is useful for selecting compounds that meet the conditions for device optimization. Specifically, using density functional theory (DFT), it is possible to calculate molecular properties related to organic EL material development, such as: - Oxidation potential - Reduction potential - Hole reorganization (rearrangement, reconfiguration) energy - Electron reorganization energy - Triplet energy - Triplet reorganization energy - Absorption spectrum - TADF S1-Tx gap - Fluorescence The structure of thin films can be predicted by simulating the actual deposition onto a substrate using molecular dynamics (MD). Basic information continues below.
- Company:シュレーディンガー
- Price:Other